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ABS_AC_

As a step towards a better understanding of turbulent liquid-metal

heat transfer in rectangular ducts with heat generation in the fluid

stream, an analysis is performed for forced-convection heat transfer to

slug flow in rectangular channels wlth aspect ratios from i to _ and with

heat sources in the fluid. The channel Walls are uniformly heated, and

the heat flux on the short sides is considered an arbitrary fraction or

multiple of the heat flux on the %road sides. The analysis is based on

the additional assumptions that (i) heat transport by eddy conduction is
negligible compared with molecular conduction, (2) internal heat gener-

ation is spatially uniform, and (5) fluid p_operties are invariant with

temperature.

The temperature distributions are determined by utilizing the method

of superposition, and the required eigenvalues and constants are deter-

mined analytically. The results obtained apply in the thermal entrance

region of the channel as well as far downstream from the entrance.

The effects of (i) the ratio which determines the relative role of

internal heat generation to that of Wall heat transfer, (2) specified

aspect ratio, and (3) specified heat fluxes around the channel periphery

on temperature distributions are investigated. Numerical results for

wall temperatures and bulk-mean fluid temperatures are presented graph-

ically. The solutions point out the locations of maximum temperature.

The results are useful in estimating local heat-transfer characteris-

tics in turbulent heat-generating liquid metal flow in rectangular ducts

when the Prandtl and Reynolds moduli are low.

INTRODUCTION

Recent technological developments in space power generation have

stimulated interest in the problem of forced-convection heat transfer to

liquid metal flow in passages with internal heat generation in the fluid

stream. This system has applications, for example, in the design of
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liquid metal-fuel reactors, electromagnetic pumps and flowmeters, and

liquid metal MHD generators. The fluid in these devices will be heated

by radioactive fission products or by an electric current flowing through

the fluid. A factor of importance for the proper operation of these de-

vices is maintaining a satisfactory temperature distribution along the

passage walls. The designer, therefore, must be able to compute the

temperature distribution along the walls and to know how much heat must

be removed to cool the walls to prevent temperatures from exceeding de-

sign limits. The problem involves studying liquid-metal duct flow with

combined internal heat sources and wall heat transfer. Turbulent flows

are very often encountered in practice, and it is this flow regime which
is of concern here.

This investigation is concerned with hydrodynamically developed tur-

bulent flow of a liquid metal in rectangular ducts with aspect ratios from

i to _ and with uniform internal heat generation. The channel walls are

considered uniformly heated, but the heat flux on the short sides of the

channel is an arbitrary fraction or multiple of the heat flux on the long

sides. Such a heat transfer situation, for example, may be the result

of unwanted heat leakage or addition through insulation.

Attention is focused here on the rectangular duct because of its in-

creasing use Imthe applications mentioned. Within the knowledge of the

author, the experimental and analytical studies of turbulent liquid-metal

duct flows with internal heat generation have been confined to elementary

geometries such as the circular tube (refs. I to 3, and 5) and the parallel-

plate channel (refs. 4 and 5). In contrast to this moderate amount of

information, turbulent-flow heat transfer to a heat-generating liquid metal

in a rectangular duct has apparently received little analytical and no

experimental work. A few studies related to the problem considered in the

present investigation are noted. In the absence of internal heat genera-

tion In the fluid, there have been developed solutions which approximate

situations which might occur with liquid metals in tu#0ulent flow through

rectangular ducts. Fully developed slug-flow Nusselt numbers and wall-

temperature distributions have been presented in references 6 to 8. In

these references, the solution of the problem was obtained by assuming,

in addition to a uniform velocity throughout the duct, that turbulent eddy-

ing does not contribute to conduction of heat within the fluid. The results

pertain to systems characterized by low Reynolds and Prandtl moduli and to

the portion of rectangular duct beyond the thermal entrance region. In

the discussion of reference 9, Hoagland discusses work done on the thermal

entrance region for laminar slug flow in rectangular ducts, and reports

some numerical results. Reference I0 has examined forced-convection heat

transfer to laminar slug flow in a rectangular channel for the boundary

condition of a duct wall temperature both peripherally and axially uniform.

This analysis was carried out under the restriction of no internal heat

sources,
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It is the purpose of this investigation to study forced-convection

heat transfer in a heat-generating liquid metal flowing in a rectangular

channel where heating occurs on all four walls. The uniform heat flux on

the short walls is assumed an arbitrary fraction or multiple of the flux

on the broad Walls. For the sake of completeness, the converse condition

is also considered_ namely, that the heat flux on the broad walls is any

fraction or multiple of the flux on the sho__t walls. Aspect ratios from

i to _ are considered for the rectangular channel, and the aim of the

following analysis is the determination of the axial and peripheral

temperature distribution and heat-transfer characteristics in the channel.

The findings of the analysis should be applicable along the entire length

of the ducts, that is, in thermal entrance as well as fully developed

regions.

The present very limited knowledge of turbulent liquid-metal flow and

eddy-diffusivity-variation in noncircular passages make theoretical pro-

gress very unlikely without appeal to simplified models. It does not seem

likely, moreover, that any single model (for which a mathematical analysis

is feasible) will prove adequate for all Reynolds and Prandtl moduli.

Therefore, in order to gain some understanding of the complex problem of

turbulent liquid-metal flow in rectangular ducts with wall heat transfer

and internal heat sources, consideration will be given to a simplified but

representative model} this specific model not only retains many of the

physical characteristics of turbulent liquid metal duct flow, but also

leads to a tractable mathematical problem. This model should, therefore_

provide information on the temperature distribution and heat-transfer

characteristics for such flows in rectangular passages.

The idealized system assumed to approximate the forced convection

system under consideration is based on the following postulates: (i) The

established turbulent velocity profile is represented by a uniform

distribution; (2) the thermal eddy diffusivity is small compared to the

thermal molecular diffusivity and is neglected} (3) longitudinal heat

conduction is small compared to longitudinal convection and transverse

conduction and is neglected; and (4) the internal heat generation is spa-

tially uniform. It is pointed out (e.g., refs. 6 and Ii) that the blunt-

nosed turbulent velocity distribution for a liquid metal system can be

represented satisfactorily by a uniform distribution. The second postulate

implies (ref 12) that the thermal solution pertains to systems character-

ised by low Prandtl modu!i and low and intermediate Reynolds moduli. The

third postulate has been shown in reference 13 to introduce a negligible

error for Peclet moduli equal to, or greater than, approximately i00.

References 6 to 8 point out that turbulent-flow heat transfer to liquid

metals may be estimated, at least in the absence of internal heat gener-

ation, by the use of the slug-flow solutions for molecular conduction.

In this investigation numerical results are provided for the case of
internal heat sources which are uniform across the duct cross section and

along the duct length. The results can undoubtedly be extended, however,

to include sources which vary in the transverse and longitudinal directions

(refs. 14 and 15).
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ANALYSIS

The rectangular channel and its coordinate system are shown in fig-
ure i. Turbulent velocity is postulated to be fully established at x = 0.
The fluid temperature at the channel entrance is uniform across the sec-
tion at a value t e. Within the channel a heating process takes place that
includes a uniform heat generation within the liquid metal and a uniform
heat transfer at the channel walls. The fluid is assumedto have constant
physical properties, and only steady-state heat transfer is investigat@d.

The established turbulent velocity profile is represented by

: u (l)

The differential equation describing convective heat transfer for the

idealized system takes the form

_t K {_2t + _2t_ Q

: pop pc-7
(2)

The linearity of the energy equation (2) suggests that the temperature

t(x,y,z) be written as the sum of two parts,

t(x,y,z) = tQ(x,y,z) + tq(x,y,z) (3)

in which tQ corresponds to the situation where a heat-generating fluid
with an entering temperature of zero flows through a channel with insulated

walls (qB = qs = O) and tq corresponds to the situation where a nongener-

ating fluid entering at temperature te flows through a channel with heat

transfer qB and qs at the walls. The general solution can then be
obtained by superposition of the _two simpler solutions in accordance with

equation (3), since if the individual temperature fields satisfy the linear

energy equation_ then their sum does also.

At this stage, it is convenient to employ dimensionless coordinates;

the dimensionless equations and boundary conditions used to determine tQ

and tq are then, respectively:

" _tQ _ _2tQ _2tQ Qa__2

K

_tQ

_-7 : 0 at y' : 0 and i (Insulated walls) (_b)

_tQ

_z' = 0 at z' = 0 and o (Insulated walls) (4c)
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and

tQ(O,y',z') = 0 (Entrance condition)

O.t.q _ _2tq + 32tq

_x' 3y,2 _z' 2

(4d)

" " (_a)

_tq _ qBa _
at _y' = 0 (Specified wall heat flux) (5b)

3tq _ _ at y' = i (Specified wall heat flux) (5c)

_tq _ qs a _

_z' K 2K(a + _)
at z' = 0 (Specified wall heat flux) (5d)

3tq
= at z' = a (Specified wall heat flux) (5e)

_z' 2K(a + cO

tq(O,y',z') = te (Entrance condition) (5f)

These two problems will be treated separately and the results combined to

yield information for the general situation. There is first considered

the problem of a heat-generating fluid flowing in an insulated channel.

The problem of wall heat transfer to a nongeneratlng flowing fluid is then
considered.

Internal Heat Generation with Channel Insulated

The solution for tQ is found most easily by separate consideration
of the fully developed and entrance regions. There is first considered the

fully developed temperature which applies in the region downstream of the

entrance region. The temperature tQ, d satisfies equation (4a)

- 82tQ, d 32tQ, d Qa 2
+ _ (6)

_x' 3y,2 3z,2 K



The fully developed situation for uniform internal heat generation is

characterized by the fact that

8tQ'd Q (7)

_-x = pUc--_

Equation (7) states that the temperature at all positions in the rectangular

cross section riseslnthe same linear fashion along the channel length.

For the fully developed situation the boundary condition at the entrance

of the channel (x =?0) need not be considered, since it is accounted for

by the entrance region solution, and equation (7) maybe rephrased as

tQ, d
= x' + f(y',z') (8)

Qa2/K

The function f(y',z') is found by inserting equation (8) into the differ-

ential equation (8). This leads to the equation for f(y',z') as

+ o (9)
by' 2 bz '2

The boundary conditions on f(y',z') are determined from the thermal

boundary conditions (eqs. (#b) and (4ci), so that

bf

y_ = 0 at y' =!0 and i (lOa)

_f
_-_ = 0 at z' = 0 and _ (lOb)

T_ing a solution of equation (9) in the fom

f(y',z') = aOy'2 + alY' + a2z'2 + a_z' + a4 (li)

in which ao, al, .... are constants chosen to satisfy the boundary condi-
tions (eqs. (lOa) and (10b)), there is obtained the result

L

f(y',z') = a_ = constant (12a)

The constant can be evaluated from an overall energy balance on the fluid

for the length of channel from 0 to x:
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tQ, b = pUcp x =

_ flut
JO Q' ddy'dz'

= _ tQ, ddy'dz'

This leads to the condition from equation (8):

a1"if(y',z')dy'dz' = 0
(12b)

from which the constant is evaluated.

f(y',z') is found to be
The resulting expression for

f=O (13)

The final expression for the temperature distribution

tQ, d

Qa2/K x'

t_, d is given by

(14)

which applies only in the fully developed region downstream of the thermal

entrance region.

To determine the temperatures in the entrance region, it is conven-

ient to introduce an entrance temperature t_ so that

tQ = tQ, d + t_ (15)

From the linearity of the energy equation (4a), it is found that t_
satisfies the equation

_t__ b2t_ + _b2t_ (16a)

bz ' by' 2 bz '2

with the boundary conditions

_t_= 0 at y' = 0 and i
by'

(16b)

_z' = 0 at z = 0 and (16c)



At x' = O_the condition is

' = = z') + t_(O,y',z')tQ(0,y ,z') 0 tQ,d(0,y',

or, by rearranging:

t_(o,y',z'I
Qa2/K

= -f(y',z')= 0 (iSd)

The solution of equation (16a) which will satisfy equations (16b) to

(16d) can be found by using a product solution which leads to a separation

of variables. This will have the form

Qa_K aljY(y' )Z(z')e -hijx

i=0 j=0

(iv)

in which the functions Y(y') and Z(z') satisfy the differential equations

dg-_Y c_i2Y 0 (18a)
dy,2 + =

d2Z
+ _z = o (lsb)

dz '2

with the respective boundary conditions

dY
- 0 at y' = 0 and l (18c)

dy'

dZ
dz' - 0 at z' = 0 and _ (18d)

and _j = _ + t_21e Equations (iSa)and (18b)with their boundary condi-
tions belong to well-known class of differential equations of the

Sturm-Liouville type. Solutions are possible only for discrete, though

infinite, sets of cd and _j values.

It may be seen readily that the differential equations (18a) and (18b)

and the boundary conditions are sltisfied if there are taken for the func-

tions Y(y') and Z(z') the expressions

Y = cos(i_y'); i : 0, i, .

"coslJ-_l; j O, i,Z = =

%u !

(19a)

(19b)

fi,



The eigenvalue Zij is then given by the following expression:

(19c)

The coefficients aij in equation (17) are evaluated to satisfy the

entrance boundary condition equation (16d). This gives the condition

co co

cos(i_y',)cos aa2/K

i=o _j=o

= o (2Oa)

It follows immediately that

aij = 0 for all i and j (20b)

This result indicates that there is no entrance region solution; that is,

t_/(Qa2/K) = 0.

NOW that tQ, d and t_ are known, they can be superposed as in

equation (15) to obtain the solution that applies over the entire length

of the channel, which is simply

tQ _ x' (_L)
Qa2/K

The local bulk fluid temperature to b(X') along the channel length, for
the uniform heat source, is given by_'

Q x

tQ, b = pUc--_

or

tQ,b(x')- Qa2 x, (z2)
K

Wall Heat Transfer Without Internal Sources

There is considered next the situation where there are prescribed

wall heat fluxes qB and qs = _qB at the channel walls (fig. i) but no

internal heat sources. The temperature tq(X'_y' ',z ) is the solution to
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equation (5). To obtain a solution for tq that will apply over the entire
length of the channel, it is convenient tobreak tq into two parts. The
first part is tq, d, the fully developed solution. The second part is t_,
an entrance region solution that is added to [_tq,d to obtain temperatures
in the region near the entrance of the channel. The temperature tq is
then given by

tq = tq, d + tq

From the linearity of the energy equation, tq, d and t_ have to each
satisfy equations (5).

The fully developed solution is considered first. Far from the en-
trance of the rectangular channel the temperature rises linearly in the
axial direction because of the uniform, but unequal_ heat inputs at the
channel walls. From a heat balance on the fluid, the temperature gradient
in the fully developed region must be

_tq'd = _ -- constant (24)

_x pUcpa2_

The temperature distribution is then given by the equation

tq, d - te _ i Ex, + F(y',z')] (25)

An equation for the function F(y',z') is found by substituting equation (25)

into equation (5a). This gives

_2F +_2F - 1 (26a)
_y,2 _z,2

The boundary conditions on F(y',z') are determined from the thermal boundary

conditions (eqs. (5b) to (5e)) so that

_F _ o ,_y' 2(_ + O) at y = 0 •

_F c y,

(26b)

8F _

+

_F c_ at z' = O}
at z' =

(26c)
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The solution of equation (25a) is taken in the form

F(y',z') = boY '2 + blY' + b2 z'2 + bsz' + b4 (275

The constants bO, bl, b2, and b3 can be found from the conditions given

by equations (26b5 and (26c) and which yield

a bl _bo, _ = _ b5 _ab 2
tO = 2(_ + (_)' = 2(_ + (_)' =

Hence equation (27) can be represented in the following form:

a E '2 - y' + _ z '2 _z7 + b_ (28a)F(y',z') = 2(a'+ o) "o -

The remaining constant b_ can be evaluated from an overall energy balance

on the fluid for the length of channel from 0 to x:

_l'l(tq, d - dy'
te) dz'

pUcpa 2Jo
x

This leads to the condition from equation (25):

o/i ,
F(y ,z')dy'dz' = 0 (ZSb)

from which the constant is evaluated. The expression is then inserted

into equation (255 to give the final expression for the fully developed

temperature distribution:

tq, d - te _ i x' + i Fv, 2 _ y, + _ z,2 i (i + cca)_- O_Z v +-_
(29 a5

This can be rephrased in an equivalent form

tq, d-te (__)qBa/K = 2 1 + x' + y'2
I (i+ _) (29b)_ y' + 5 z'2 _ _z' +

Equation (29b) applies only in the fully developed region.

To determine the temperatures in the thermal entrance region the

function tq* is needed. From the linearity of the energy equation, the

* is the same as equation (5a):equation for tq

8t_ 2 * 2 .tq 8 tq= _ + (30a)
_x' _,2 bz,2
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Since the wall heat additions have already been accounted for in the fully
.

developed solution, the:boundary conditions for tq are that no heat is
transferred at the walls:

_-v = 0 at y' = 0 and i (3Oh)

_q
= 0 at z' = 0 and _ (30c)

At the channel entrance (x' = O) the condition is

tq(O,y',z') = te = tq, d(O,y',z') + t*(O,y'q ,z')

or by rearranging,

(qBa_ff,2 C_ I
t_(o,y',z,)= y, °_l" _IL_ - +-7_ -_" +_ (1+

It will now be convenient to represent the entrance region temperature

of the fluid by two functions e(x',y') and _(x',z') such that

(30d)

tq

tq

q:_aT_= e(x',y')+ ,(x',z')
(Sl)

In terms of O the energy equation (50a) becomes

5e 52e- (3_)

for which the boundary conditions will be t_ken as

.v_ = 0 at y' = 0 and i

Correspondingly, the function @ is given by.:

-_ = _--_
with the boundary conditions

(33)

_z' = 0 at z' = 0 and o
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A solution for the function e is t_ken in the form

co

e Z Ame-r_x' ')
= cos (rmY

m=2_ 4_ . . .

(34)

in which the eigenvalues Ym are given by

=m_

In a similar manner the function @ has the solution

(3s)

co

%= cos (_nz') (36)

n=2, 4, . . .

where the eigenvalues 5n are given by

n_ (37)% =-y

The coefficients Am of equation (34) and the coefficients 5n of

equation (36) are evaluated to satisfy the respective entrance boundary

conditions. This gives the conditions

0O

m=2, 4, ...

Am cos (m_') = - F_y'2
i

(l + _)] (m8a)-y'+_

c_

n=2, 4, ...

According to Sturm-Liouville theory the coefficients Am and I_ given by

f! _,2
Am _ _ "

i

i (l + _)] cos (m_y')dy'-y' +_

cos 2 (m_y _)dy '

(39a)
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-oz,) 9z '2 cos dz _

Bn = - (59b)

The integral appearing in the numerator of equation (59a) may be written as

,2 _ y, + i (i + _ cos (m_-')dy' - _
6 m2_2

where m is an even integer. If m is an odd number, the integral yields

a value of zero. The series coefficients are thus

4 (4Oa)
Am = m2 2, m = 2, 4, .

In a similar manner the coefficients Bn are obtained as

4<I_

_., : - _-n: 2, 4, (4Oh)
n,..n_

* are known, they can be superposed as inNow that tq, d and tq

equation (23) to obtain the solution which applies over the entire length

of the channel. This is

tq - te

qBa/K
= 2(2+-_)x' +Y'2- Y' +_z'2o

i (i+ _o)
_ _Z _ +

oo

Z m2_2

m=2_ 4_. , . .

_m2_2x ,
cos (m_y') e

The local bulk mean temperature

ag n_ 2 cos n_ e

tq, b along the channel is given by

(4i)

, w
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tq, b = te +
pUCp_a

X

::_te + --_ x' (42a)
_K

Substituting _ = 2(a + _)(qB a) into equation (42a) gives

tq_'b"te-_Ba/K 2(1 + _)x'
(42b)

The analysis of the preceding paragraphs led to the determination of

the temperature distribution for the condition where the heat flux on the

short sides is an arbitrary fr_ction or multiple of the heat flux on the

broad sides, or more simply, where qs = _qB" There may arise, however,
practical applications where it is desirable to express the heat flux on

the broad vails as _qB := _q_,The te_iper_tuTZe _istribution in this situation

is then obtained from equation (41) by substituting _ = 1/_ and qB = _qs:

qsa/K = _ _ + x'
+_(y,2. y,) + 1 z,Z z' + l (#+ G)

oo

4 (mny,)e_m2_2x '
m2----_ cos

o n2_2 cos n_--

n=2,...

The local bulk mean temperature isgiven by

tq,b-te (i)qsa/K- = 2 _ + x' (44)

Combined Internal Heat Generation and Wall Heat Transfer

Results for the situation where internal heat generation and wall heat

_i_ransfer are occurrin@ simultaneously are f@und by combining the solutions

for tQ and tq in accordance with equation (3). For side wall heat

transfer given by qs = _qB' the solution can beWritten as
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tte jqB _ = + "+ x' + y,2 _ y, + -_az'2
i (i+ _)

- C(Z I +

O0

Z 4 -m2_2x'm2---_ cos (m_y')e

m=2, 4,...

O0

Z- o_o n2z 2

n=2, 4, ...

___o_(__)e_zJ_ _)

where

R = Q__aa (46)

qB

the temperature distribution may also be expressed in terms of side wall heat

transfer by substituting i'/_ for _, _qs for qB' and replacing the

parameter R by the parameter S, defined as

S : Q__aa (47)
qs

The parameters R and S are the ratios of internal heat evolution to the

heat transferred at the channel walls and give a measure of the relative

importance, in connection with temperature development, of internal heat

generation in the presence of wall heat transfer.

Heat Transfer Results

From the temperature distribution given by equation (45), various

quantities of engineering interest can be determined. In the developments

to follow, the analytical results will be expressed in terms of the broad

wall heat transfer qB"

Results of practical interest are the wall temperature variations

corresponding to prescribed wall heat transfer and internal heat genera-

tion. The local temperatures tw(X',Z' ) m twB along the broad walls can

be found from equation (45) by evaluating it at y' = 0 or at y' = i:
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twB - te

qBa/K
i (i + o_)

- _Z t +

co

OO

- ctC n_- 2 cos n_ e-

n--2}...

The local temperatures tw(X',y' ) _ tws along the side walls are found in
a similar manner from equation (45) by evaluating it at z' = 0 or at

Z ! _ _,

i (I + _o)-y'+_

Oo

Z 4 -m2_ 2x '- m2----_ cos (mn-y')e

Z 4 -(n2_2x'/a 2)- _a n2----_ e (49)

Another form of these equations which is more convenient is obtained

by introducting the bulk mean temperature tb. For a uniform heat source
and uniform wall heat transfer, the bulk temperature is given by

tb - te

qBa/K
(so)

Then the local wall- to bulk-temperature difference along the braod walls

is given by
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twB- tb

qBa/K

c_ ,2 1

oo

m2_ 2

m , ,

oo

- c_c_ n2-----_ cos

n=2,...

(n_r _--)e- (n2;r2x

,/°2) (Sl)

while the temperature difference along the side walls is

- i (i + aa) - I 4 -m2_2x'tws tb = y,2 . y, + _ m2_2 cos (mny')e
qBa/K

m=2_...

(52)
- _o n2_2 e

A noteworthy feature of equations (51) and (52) is that the variation of the

local wall-to bulk-temperature differences is independent of the internal

heat generation rate. The differences between the fully developed wall and

bulk temperatures are

(twB - tb) d

qBa/K

_ 1
= e z ,2 _z' + _ (i + d_) (53a)c

(tws - tb) d
1 (i + _o)

qBa/K - Y'2 - Y' + _ (53b)

The ratios of local to fully developed temperature differences along

the broad walls or side walls at any location in the channel is found from

equations (51) to (53) as

oo oo

I I4 _m2_gx, 4
m2_:2 e + o_a n2;r2 cos n_ e-'n2;r2x'-_2.

m=2_.., n-2,...

,2 , i (1 + _c)-- Z - _Z +
0 b

(54a)
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4 -m2_2x' 4

m2_2 cos (m_')e + c_a n2_2

(tws - tb) = i - m=2,.., n=2,...

(tws - tb)d y,2

e

1 (l +
-y' +_

(S4b)

It may be observed from the foregoing results that a prescribed heat flow

from the duct surfaces to the fluid produces, at a given axial location, a

local wall temperature or wall- to bulk-temperature difference which

varies around the periphery of the duct and which also varies with duct

aspect ratio.

Results and Discussion

To illustrate the effects of internal heat generation and prescribed

wall heat transfer on wall temperature distributions, local bulk mean

temperature, and thermal entry lengths for liquid metal flow in rectangu-

lar passages, a number of solutions have been obtained for various

combinations of aspect ratio a, wall heat flux ratio a or _, and heat

flux ratio R or S. For the sake of brevity, only some of these results

are included in this paper. In particular, values of the parameters

and _ chosen for the computations correspond to the following cases:

(a) _ = -i, in which the broad walls are heated and the side walls are

cooled; (b) _ = O, in which the side walls are insulated; (c) _ = i, in

which uniform heating (or cooling) takes place all around the duct periph-

ery; and (d) _ = O, in which the broad walls are insulated.

Designers of channels for the applications previously mentioned are

interested in the temperatures achieved by the walls, and in particular

the peripheral location where the wall temperature will assume its high-

est value for a known wall heat input and internal heat generation rate.

From an examination of the analytical results, it is to be expected that

the peak temperatures will occur either in the corner of a duct or else

at the centerline of the broad wall or short wall, depending upon the wall

heat flux ratio _. Therefore, knowledge of temperature conditions in

such regions is of special interest. The wall temperatures are given

here relative to the bulk temperature, since the heat flux ratio R or

S is then eliminated as a parameter.

The longitudinal variation of the dimensionless wall temperatures

were evaluated from the analytical solution and are presented in fig-

ures 2 for duct aspect ratios of i, &, and i0. For the special case of

side walls insulated (_ = O) the solution is independent of the duct

aspect 9atio, and therefore, the result applies for all aspect ratios.

At some places along a wall, the wall- to bulk-temperature difference
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maybe negative. This is understandable, however, if it is recalled that
tw is a local value along the wall, while t b is an average value over
the entire cross section. Whenthe broad walls are heated and the side
walls are cooled, the peak temperatures occur along the centerline of the
broad walls at all axial positions for the aspect ratios shown(fig. 2(a)).
With heating from only the broad walls (fig. 2(b)), these walls assumea
uniform temperature for all aspect ratios which is higher than the tempera-
tures along the insulated side walls. For a rectangular duct with uniform
heat flux all around the periphery (fig. 2(c)), the peak temperatures for
all a's occur at the duct corners. Finally, when heat is transferred
from only the short walls (fig. 2(d)), these walls attain a uniform temper-
ature which is higher than the temperatures along the adiabatic broad walls.

Another quanltiy which is of practical interest is the bulk meantem-
perature variation along the length of the channel. The bulk temperature
is given here relative to the temperature of the fluid at the entrance to
the channel. The dimensionless bulk temperatures are presented in figures 3
for duct aspect ratios of i, 20, and _ (parallel-plate channel) with the
heat flux ratio appearing as a family parameter.

Positive and negative values of the parameters R and S are con-
sidered in the figures. It is supposedthat Q is positive (a heat source).
A positive value of R, therefore, implies that qB is positive, that is,
that heat is being transferred from the broad walls to the fluid. A
negative value of R, on the other hand, implies that qB is negative or
that heat is being transferred from the fluid to the broad walls° For
positive R, therefore, internal heat generation and broad-wall heat transfer
reinforce one another to produce a bulk temperature larger than that obtained
in the absence of internal heat generation. Conversely, for negative R,
the broad wall heat transfer opposes internal heat generation in the bulk
temperature development. Similar arguments apply in connection with side
wall heat transfer qs and heat flux ratio S.

For very small values of IRI or isI, wall heat transfer dominates

the bulk temperature development, while for large values of IRI or

Sl, the effects of internal heat generation dominate. This accounts for
he varieth of trends that are evident in each of the figures. It is also

observed that the bulk temperature development is, ln general, slightly

affected by duct aspect ratio _ to about 20 and insignificantly thereafter.

For a duct with insulated side walls, however, the bulk temperature de-

velopment is independent of the duct aspect ratio.

The foregoing presentation of results has been concerned with wall

temperatures in the thermal entrance region. As a matter of general

interest the wall temperature variation around the periphery of the duct

in the fully developed region is considered. The wall temperatures are

again given relative to the bulk temperature, Since in the fully developed

region the temperature difference (tw - tb) d is independent of x. In

addition,'as noted earlier, the temperature differen_@ tw - tb is inde-

pendent of the heat flux ratio R at all axial positions.



21

Fully developed wall temperatures are presented in figures 4 for

values of _ and _ considered earlier and for various aspect ratios.

It is worth while to recall that tw is a local value along the wall,

while tb is an average value over the entire cross section. Therefore,

at some places along the wall, the temperature difference (tw - tb) d is

negative, which means that tb is larger than tw. The hot spots are

strikingly displayed in these figures, appearing in the corners, or at the

broad wall or short wall midpoints. It is also seen that the aspect ratio

has a profound effect on the temperature distribution.

Of considerable practical importance to the designer is the knowledge

of the conditions under which entrance effects must be accounted for in

heat-transfer calculations. The approach of a local wall- to bulk-

temperature difference to the fully developed value is, in theory, asymp-

totic. Consequently, it is difficult to identify a specific length of

channel as a thermal entrance length. It is practice to define a thermal

entrance length in terms of the downstream distance x/aRePr at which

the temperature difference approaches to within 5 percent of the fully

developed value. The variation with dimensionless axial distance of local

to fully developed wall temperatures at the duct corner and at the broad

wall and short wall centerlines has been evaluated from the analytical

expressions. The results thus obtained have been plotted in figures 5 for

values of a = - i and _ = 0, for parametric aspect ratio values. It

should be noted that the corner temperature ratio is not shown for the

square duct when _ = - i, since for this situation the corner temperature

difference is zero at all axial positions. Lines delineating the condition

(tw - tb)/(t w - tb) d = 0.95 have been drawn in the figures to facilitate

determining the thermal entrance length.

From an inspection of the graphs, it is seen that for the wall heating

conditions represented, the wall temperature profiles become fully de-

veloped at widely different distances from the entrance to the heating sec-

tion, depending upon the particular wall location chosen for consideration.

It is also evident that there is a strong influence of the side walls of

the ducts on the temperature developments, with the thermal entrance

lengths increased with increased aspect ratio.

It is practice in reporting heat transfer connected with flow through

noncircular passages to present average heat transfer coefficients or

Nusselt numbers based upon a heat flow averaged around the duct periphery

and on an average wall temperature. This practice has utility when the

wall temperature remains constant everywhere, or is at least constant

around the periphery of a duct at a given axial position. In the present

situation where the wall boundary condition is one of peripherally and

axially uniform heat input, however, it is apparent that the knowledge

of the resulting local wall-temperature distribution is of more importance

to the designer than the Nusselt numbers or even average thermal entry

lengths. Therefore, no at_tempt has been made to determine these quantities.

It is felt that the results are presented in a form more convenient for

engineering calculations.

I

i
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CONCLUDINGREMARKS

Results have been presented for heat transfer in rectangular channels
with prescribed wall heat flux@s and heat sources uniformly distributed in
the fluid. The various effects considered have thrown somelight on the
axial and peripheral temperature distributions as well as on the heat
transfer characteristics.

The present results are strictly valid only for the slug-flow velocity
distribution with heat transfer only by molecular conduction. The simpli-
fication provided by these assumptions, however, has madeit possible to
obtain exact mathematical solutions to the governing energy equation. Of
greater importance is the fact that these temperature distributions approxi-
mate conditions to be expected for turbulent liquld-metal flow in rectangu-
lar ducts for relatively low Prandtl and Reynolds modull. The results, in
addition, point out the locations of maximumtemperatures.

For improved heat transfer calculations, velocity-profile and eddy
diffusivity variations would have to be taken into account to provide a
more realistic description.. Turbulent velocity profiles for circular pipe
and parallel plate duct systems have been satisfactorily represented by
power-law expressions. Within the knowledge of the author, velocity-profile
and eddy diffusivity distributions for turbulent flow in rectangular ducts
have received little theoretical consideration. Reference 16 presents a
variational method for determining velocity distributions for flow of a
power law fluldfn_cylindrical ducts. The results might prove useful for
heat transfer studies.

In closing, it should be mentioned that the slug-flow, molecular-
conduction analysis can be used to treat otherwall_boundary conditions,
such as a specified axial and peripheral wall temperature distribution.

Am

a

alj

Bn

b

Cp

NOMENCLATURE

coefficient in series forttemperature distribution with wall

heat transfer and Q = 0

lengtK of short side

coefficient in series for temperature distribution with internal

heat generation and qB = qs = 0

coefficient in series for temperature distribution with wall

heat transfer and Q = 0

length of broad side

sp£cific heat of fl"uid at constant pressure
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F(y',z')

f(y',z')

Pr

Q

q

R

Re

S

t

U

U

X

x w

Y(y')

Y

y'

Z(z')

z

z t

z It

c_

heat flux ratio,

Reynolds number,

heat flux ratio,

temperature

transverse temperature distribution in fully developed region

with wall heat transfer and Q = 0

transverse temperature distribution in fully developed region

with internal heat generation and qB = qs = 0

Prandtl number, _Cp/K

rate of internal heat generation per unit volume

heat addition per unit wall area

heat addition per unit channel length, equal to 2bqB + 2aqs

Qa/qB

pUa/_

Qa/qs

velocity taken as uniform over duct cross-section

local fluid velocity

coordinate measured along the axial direction

dimensionless axial coordinate, x/aRePr

eigenfunction for case of internal heat generation and

coordinate measured along short side

dimensionless coordinate, y/a

eigenfunction for case of internal heat generation and

coordinate measured along long side

dimensionless coordinate, z/a

dimensionless coordinate, z/b = z'/a

wall heat flux ratio, qs/qB

wall heat flux ratio, qs/qB = i/_

eigenvalues for case of internal heat generation and

qB = qs = 0

qB = qs = 0

qB = qs = 0
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5n

o(x',y')

K

P

0

,(x,,z,)

eigenvalues for internal heat generation and

eigenvalues for wall heat transfer and Q = 0

eigenvalues for wall heat transfer and Q = 0

function defined by equation (32)

thermal conductivity of fluid

2
eigenfunCtio_: 2 + _j

fluid viscosity

fluid density

aspect ratio, b/a

function defined by equation (33)

qB = qs = 0

B

b

d

e

Q

q

S

W

Subscripts

refers to broad wall

bulk mean value

fully developed

entrance value

insulated wall, internal heat generation

wall heat flux, no internal generation

refers to side wall

value at wall

Superscript

entrance region
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